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a b s t r a c t

A novel method for establishing multivariate specifications of food commodities is proposed. The speci-
fications are established for discriminant partial least squares (DPLS) by setting limits on the predictions
of the DPLS model together with Hotelling T2 and square error of prediction (SPE). These limits can be
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tuned depending on whether type I error (i.e. a correct sample is declared out-of-specification) or type
II error (i.e. an out-of-specification sample is declared within specifications) need to be minimized. The
methodology is illustrated with a set of NIR spectra of Italian olive oils, corresponding to five regions and
the class Liguria is the class of interest. The results demonstrate the possibility of establishing multivari-
ate specification for olive oils from the Liguria region on the basis of spectral data obtaining type I and

5%.
iscriminant partial least squares (DPLS)
ood authentication

type II errors lower than

. Introduction

According to the American Society for Testing and Materials
ASTM) [1], specification is “an explicit set of requirements to
e satisfied by a material, product, system or service.” The docu-
ent also states that “Examples of specifications include, but are

ot limited to requirements for: physical, mechanical, or chemical
roperties, and safety, quality, or performance criteria. A specifica-
ion identifies the test methods for determining whether each of the
equirements is satisfied”. Specifications have a large importance in
ngineering, manufacturing and trade, and the governments must
nsure proper development or provision of services to establish
he minimum requirements needed to ensure the quality and ade-
uacy of the item or service provided. These quality requirements
re of such importance that sometimes are regulated by laws or
tandards [2,3] and overseen by competent agencies [4].

Specifications can be derived in different ways. First, speci-
cations can be a set of parameters or characteristics that the
ser defines that products must satisfy, such as the tolerances
f materials. Specifications can also be derived from observations

r researches, such as the minimum nutritional requirements in
oods [3], or the maximum levels permitted of pesticides, the heavy

etals and contaminants in general [4] and also the product speci-
cations that refer to the constitution, origin and/or characteristics
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of the product (e.g. the specifications of a protected designation of
origin of a food commodity).

Consumers feel product specifications as the way to evaluate
whether a food has the optimal conditions for consumption (man-
ufacturing, nutrition and health) [5]. Lately, it became necessary to
include specifications that ensure the authenticity of food [6]; i.e.
parameters that guarantee the origin and the production conditions
(e.g. organic food) and that there are not counterfeits. This require-
ment is also demanded by the producers because it ensures that
there is no unfair competition and because it adds value to the prod-
uct. In response, the European Union has set up three mechanisms
of protection: protected designation of origin (PDO), protected geo-
graphical indication (PGI) and traditional specific guaranteed [6,7].
Within this context, the primary objective of the European project
“Tracing the Origin of Food (TRACE)” was to develop analytical
methodologies to find a fingerprint for different food commodities
and to identify counterfeit products [8].

A product specification can be either univariate or multivari-
ate. Univariate specifications are the most commonly used and are
defined by one or more individual variables (e.g. mass, length, or
density). However, most specifications are multivariate by nature,
that is, several variables must be measured. Also, many analytical
methodologies provide the information of the product as a vector
of measured variables (i.e. mass spectrum); thus, the specifications
must be adapted to this multivariate context. The variables can be

analyzed either separately, without taking into account the rela-
tionship between them, or using multivariate analysis, that takes
into account the correlations between variables. Treating multi-
variate specifications as multi-univariate has been reported to lead
to erroneous conclusions about the quality of the product [9]. A
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ig. 1. Multivariate control charts for variables X1 and X2. Dotted lines represent
he univariate specification limits, and the ellipse the bivariate specification limits.

lear example is shown in Fig. 1, where two variables, X1 and X2,
nd their corresponding univariate limits, are plotted. The limits
reate a rectangle that frames most of the points. However, it is
ore efficient if we frame the points within an ellipse, a bivari-

te limit. The ellipse fits better the distribution of the points, two
bad” objects are rejected, and two objects rejected by the variable
1 are accepted. In this way, the joint analysis of the specifications
an refine the specification limits and reduce the type I and type
I errors. A Type I error is committed when a sample that comply

ith the specification is rejected, while a type II error is committed
hen a sample that does not meet the specification is accepted.

n general, producers will require low type I errors, because they
ill not be satisfied if a complying product is said to be out of the

pecifications. On the contrary, consumers would like to be pro-
ected against out-of-specification products, and so want low type
I errors. Multivariate analysis of specifications has become more
mportant in recent years, also because of the vast amount of data
enerated by the analytical methods [9,10]. An example is the work
y Novič and Grošelj [11], who established product specifications
ased on classification models with neural networks.

To verify one or more univariate specifications statistical qual-
ty control (SQC) tools are commonly used. Univariate SQC verifies
f the variable is within limit values (e.g. Shewhart chart) [12].
or multivariate specifications, multivariate SQC (MSQC) tools are
sed, such as the Hotelling’s T2 statistics [13]. When the number
f variables is large, such as those generated by spectral meth-
ds of analysis, principal component analysis (PCA) or partial least
quares (PLS) regression are used to reduce the number of vari-
bles, so that the multivariate control limits or specification limits
re defined using the significant PCA or PLS factors. PLS has the
dvantage over PCA that provides a control both on the input vari-
bles (e.g. the raw materials), and of the output variables (quality of
he final product), and it has been applied in the control of chemical
ndustrial processes [13].

Multivariate specifications will largely depend on the data anal-
sis methods used. In this paper we present a procedure for
stablishing product specifications from discriminant PLS (DPLS)
PLS applied to classification) [14]. DPLS binary models are derived
ith the strategy “one against all” [15], thus obtaining as many
odels as classes are being modelled (C = K). For each of the mod-

ls, the scores, the x-residuals and the predicted ŷ of the samples of

he class of interest are used to establish the boundaries of Hotelling
2, Q (or squared prediction error (SPE)) statistics and also the PLS
rediction ŷ. A product that meets the specification will be within
he statistical limits. This procedure is illustrated with the olive oil
ata set, a dataset generated within the TRACE project.
3 (2010) 475–481

2. Multivariate specifications

Unlike univariate specifications, which are used to define many
of the regulations now in observance, multivariate specifications
are scarcely mentioned in the literature. This contrasts with the
extensive references to multivariate statistical process control
(MSPC), which shares many concepts and analytical tools with
multivariate specifications. Initially referred in econometrics [16],
multivariate specifications were first studied and applied in the
chemical industry by De Smet, Duchesne and MacGregor to ensure
optimal raw materials in industrial processes [17].

To establish multivariate specifications De Smet, Duchesne and
MacGregor proposed three steps: (1) acquire an adequate set of
data, (2) develop the multivariate specifications, and (3) implement
the multivariate specifications. When acquiring the data set, we
must consider the item for which we want to establish specifica-
tions. Thus, for specifications of a final product only a single data
matrix is needed. On the contrary, for specifications of raw mate-
rials to be input in a process, three data matrices may be required:
properties of raw materials, process variables and properties of the
finished product, because the characteristics of the finished prod-
uct depend both on the variables of the process and on the raw
materials. In step two, besides studying the possibility of reducing
the dimensionality of the data by PCA or PLS, the possible corre-
lations between matrices must be taken into account. Finally, the
implementation requires an appropriate pretreatment of the prob-
lem item and to establish that the object meets the specification
limits.

The most critical step is the second one where, in order to obtain
robust specifications, it is necessary to detect and remove outliers
[9,18]. Having defined the data set, we can define the region of
multivariate specifications and monitor new objects with multi-
variate �2 or T2 statistics. �2 or chi-square calculates the distance
of a new object to the center of a data set when the covariance
matrix is known. If the covariance matrix is not known and has to
be estimated then the Hotelling T2 statistic is applied [19]. The mon-
itoring seeks that the samples are lower than the upper control limit
(UCL), calculated usually at a 95% or 99% confidence level, since it
is assumed that the data follow a normal distribution. Other possi-
ble methods of monitoring are the multivariate versions of EWMA
and CUSUM charts [19]. However, when the number of variables is
substantially increased, it is more difficult to use those monitoring
methods [19]. Therefore, the dimensionality of the data set should
be reduced with PCA or PLS [17]. PCA is used when only a single data
matrix (e.g. quality properties of the product) is considered, so the
T2 statistic is applied to the scores of PCA, and is complemented by
the Q (or SPE) statistic that takes into account the residuals, that is,
the information not modelled by PCA [9]. When data are in different
(correlated) matrices (e.g. composition of raw materials and prop-
erties of finished products) the dimensionality reduction is done
with PLS, since it maximizes the covariance between the two data
matrices [17]. Once the scores have been obtained we can apply the
T2 and the SPE statistics. Finally, the limits of the specifications are
selected to produce the smallest type I and/or type II errors [17].

2.1. Multivariate specifications in DPLS

The way multivariate specifications are used depends on the
multivariate analysis method used. It is therefore necessary to
study the advantages and disadvantages of using DPLS [14] to define
specifications. Take as an example a product with three classes

(C = 3), e.g. production sites. In this case the set of data will con-
sist of the data matrix X, with I objects (representing the products)
and J measured variables, and a vector y that encodes the classes to
which each object belongs. When developing the DPLS models the
binarization strategy “one against all” (the class of interest (coded 1)
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Fig. 2 shows the (mean centered) training data set. No important
differences were observed among the objects of the class Liguria
(solid line) and the rest (dotted line), except for the objects Lig-
uria025 and Umbria184 that have the most extreme values.
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s modelled against the rest (coded 0)) is used. However, to establish
ultivariate specifications only the scores of the Ic objects of class
c (class of interest) are used [15], i.e. for the model ω1 vs. ω2 – ω3,
nly the I1 scores of the class ω1 are used. Thus, the total number
f models developed is equal to the number of classes (K = C = 3).

Once the J variables have been reduced to an optimal number of
ignificant factors A, using DPLS, we can monitor new objects using
he Hotelling’s T2 [20] statistic:

2 = (t − t̄c)
T
S−1

c (t − t̄c) (1)

here t is the vector of scores for a new object, t̄c and Sc are the
ean vector and covariance matrix, respectively, for the scores of

he training samples of class ωc, these are calculated as:

c = 1
Ic

Ic∑
i=1

ti (2)

c = 1
Ic − 1

Ic∑
i=1

(ti − t̄c)(ti − t̄c)
T

(3)

here Ic is the number of objects in class ωc, and ti is the ith vector
f scores for objects in class ωc. Since Hotelling’s T2 monitoring
ssumes a normal distribution of the data, the upper control limit
UCL) is calculated as:

2
UCL = (Ic − 1)(Ic + 1)A

Ic(Ic − A)
F˛(A, Ic − A) (4)

here F˛ (A, Ic − A) is the upper 100˛% critical point of the F distri-
ution with A and Ic − A degrees of freedom [13].

Another statistic used to monitor new objects is the squared
rediction error (SPE), or Q. SPE provides, in the space of the original
ariables, the squared difference between the actual and predicted
alues:

PE =
J∑

J=1

(xj − x̂j)
2 (5)

The upper control limits for SPE are based on a �2 distribution
pproximation:

PEUCL =
( v

2m

)
�2

1−˛

(
2m2

v

)
(6)

here v and m are the variance and mean value, respectively, of the
PE values of the training objects and �2

1−˛ is a weighted chi-square
istribution (g�2

h
) with the weight g and h degrees of freedom [21].

In addition, different from other methods, in DPLS the predic-
ions for the class of interest (ideally values around 1) can be used to
omplement the T2 and SPE statistics. For the predictions of the class
f interest it is necessary to establish a lower and an upper limit.
ince the predictions are not necessarily normally distributed, the
ercentiles from the distribution of objects of the class of interest
re used. Thus, the limits at a given confidence level are established
rom the percentage of objects that are within those limits (for
xample 95% of the data for a confidence level of 95%). Thus, the
ultivariate specification is defined by three limits: T2, SPE and ŷ.

he object is within specifications if it fulfils these three require-
ents simultaneously. That is:

T2
i

< lim T2
UCL,˛

and
SPE < lim SPE (7)
i UCL,˛

and
limlow,˛ŷ < ŷi < limup,˛ŷ

Although the commonly accepted limits in MSQC are built for ˛
alues of 5% or 1%; when defining multivariate specifications these
3 (2010) 475–481 477

limits must be based on the behaviour of the training data, i.e. we
must find a limit that allows a balance between type I and type II
errors. This makes it necessary to optimize the limits of T2, SPE and
ŷ.

To apply the specifications to new objects a series of steps
must be followed. First, the object must be pretreated in the same
way as the training objects (i.e. log transformed, mean centered,
autoscaled, and so on). Second, the scores, the x-residuals, and the
ŷ predicted have to be calculated; and third, Hotelling T2, SPE and
ŷ statistics have to be monitored to verify that the new objects are
within the product specifications.

3. Experimental

3.1. Data set

The establishment of multivariate specifications is illustrated
with the data set olive oil [8], which contains 166 Italian olive oils
belonging to 5 different regions: Liguria (63), Sicilia (28), Lazio (29),
Puglia (28) and Umbria (18). 700 variables were measured, corre-
sponding to the values of absorbance in the near infrared region,
measured between 1100 and 2498 nm, every 2 nm.

3.2. Procedure and software

The Kennard–Stone algorithm [22] applied to each class sepa-
rately was used to split the data set into a training set (with 70%
of the objects) and a test set (with 30% of the objects). The olive
oil data were mean-centered and transformed into their first and
second derivative before the DPLS models were calculated. The pro-
cedure is illustrated with the oils from the Liguria class, but it can
be extrapolated to other classes. The DPLS models are developed
as the class of interest against the other classes, that is, Liguria vs.
Sicilia, Lazio, Puglia and Umbria. The optimal number of factors was
selected by leave-one-out cross validation (LOOCV), and three cri-
teria were tested: minimum type I error, minimum type II error and
minimum overall error.

All calculations were done using in-house made Matlab (The
Math Works, Inc) subroutines.

4. Results and discussion

4.1. Multivariate specifications. Italian olive oil data set
1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Fig. 2. Olive oil data: mean-centered training set. Liguria oils (solid lines) and non
Liguria oils (dotted lines).
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Fig. 3. DPLS scores plots for the first t

Fig. 3 shows the scores for the first two factors of the DPLS model
iguria vs. others (94.6% of cumulative variance explained in X and
% in y). At a first glance there is no clear separation between Lig-
ria class and non Liguria class groups and the objects are evenly
pread in the factor space. As it is to be expected from Fig. 2, objects
iguria025 and Umbria184 have the most extreme scores. These
bjects, however, were not removed from the dataset since the
istance to the other objects was not appreciably large.

After the DPLS had been calculated, the specifications for the

lass Liguria were established by defining limits for Hotelling T2,
PE and ŷ at a confidence level of 99%. Fig. 4 shows the values
f Hotelling T2 vs. ŷ and Fig. 5 shows the values of SPE vs. ŷ, for
he DPLS model with 15 factors and mean-centered data. By first
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ctors. (a) Training set and (b) test set.

considering ŷ, all the Liguria training objects are within the two ŷ
limits (0% of type I error). However, four non Liguria objects are also
within the limits, equivalent to a 5.5% of type II error. This indicates
that the specification of the Liguria class can be almost defined by
the two limits of the ŷ of the PLS model. By considering the limit
value of the Hotelling T2 statistic only, all Liguria oils fall below that
specification limit (0% type I error) but many non Liguria oils are
also below the limit (high type II error). The type II error is even
higher, almost 100%, for SPE (Fig. 5), since most non Liguria oils are
below the SPE limit. This is because DPLS, unlike PCA, models the
two classes simultaneously and when an object is predicted, even
if it is not Liguria, it has a low SPE. Note that ŷ statistic enabled
rejection of one non-Ligurian object that was inside the Hotelling
T2 limit. When the limits for Hotelling T2, SPE and ŷ are considered
together, the type I error was 11.4% and the type II error was 9.7%.

The type I and type II errors depend on the number of factors
in the PLS model. For specifications that protect the producer, the
optimal number of factors is the one that minimizes the type I error.
To protect the consumer, the optimal number of factors is the one
that minimizes the type II error. Fig. 6a shows the variation of type I
error with respect to number of factors (data mean-centered) when
the theoretical limits of Hotelling T2, SPE and ŷ are set at a confi-
dence level of 95%. By considering Hotelling T2 only, the calculated
cross-validation type I error is almost constant at 5% for any num-
ber of factors, which agrees with the theoretical value. Even for the
model with 17 factors the type I error for this statistic can be as low
as 0% although this is likely an overfitted model (Fig. 6a). For the
SPE statistic only, the theoretical 5% type I error is obtained only for
the model with 2 factors, and the error increases when more fac-
tors are included in the model. The reason for this increase is that
the residuals of the training samples decrease when so does the
number of factors, thus making the limit of the SPE statistic lower.
This makes that the SPE value for the cross-validated samples more
easily exceeds the SPE limit, so more samples are rejected. For the
predicted ŷ, the models from 1 to 5 factors maintain the type I error
around the theoretical value of 5% and the error increases for mod-
els with more than 5 factors, for similar reasons than for the SPE
described above (Fig. 6a). Since the objects that are declared out-
of-specification by each statistic are not necessarily the same, the
type I error of the combined use of the three statics is almost the
sum of the type I errors of each statistic. Hence, a 13.6% type I error
is obtained for the models with 1–4 factors, and then increases the
more factors are added to the model. A global type I error of 5%
can be obtained by increasing the confidence level of each statis-
tic to 99%. Fig. 6b shows the variation of type I error with respect

to number of factors, when the limits of the statistics are set to a
theoretical confidence level of 99%. In general, the type I error for
Hotelling T2, SPE and ŷ statistics decrease up to 0% in some cases.
The combined type I error is 4.5% for the PLS model with 3 factors,
close to the desired 5% for setting the specification.



lanta 8

I
I
f
e
r
f
b
a
o
r
l
m
T
e
t
c
3
2

i
s
a
t
l
i
e

d

−4 an

−7 an

−7 an

−7 an

−8 an

−8 an

−8 an

−8 an

−8 an

w
t
H
t

N.F. Pérez et al. / Ta

To establish specifications that protect the consumer the type
I error should be minimized. Fig. 7 shows the variation of type
I error with the number of factors. In general, a large number of
actors are required to obtain type II errors lower than 10%. For
xample, for a confidence limit of 95%, a model with 22 factors is
equired for the Hotelling T2 statistic and a model with 15 factors
or the ŷ. The SPE statistic required 36 factors, although this can
e considered casual because the SPE of all objects (both Liguria
nd non Liguria) was so large that they all were considered out
f specification. By combining the three statistics, 15 factors are
equired in the model (Fig. 7a). Moreover, when the confidence
evel is increased from 95% to 99%, more factors are required to have

inimal type II error, 14 factors with 95% against 16 for 99% (Fig. 7).
his behaviour is opposite to what it was observed with the type I
rror. Note that the limits on ŷ have the largest effect in reducing
he type II error. For example, for the model with 14 factors, the
ombined use of only T2 and SPE statistics gives a type II error of
7.5%, while combining T2, SPE and ŷ the error decreases down to
.8% (Fig. 7).

Given the behaviour observed with type I and II errors, the spec-
fication limits for individual statistics (Hotelling T2, SPE and ŷ)
hould be established at a confidence level of 99% in order to obtain
combined type I error of 5%. The same procedure was applied to

he data processed with the first and second derivative with simi-
ar results. It confirms the need for a confidence limit of 99% in the
ndividual statistics, so that by combining the statistics the type I
rror is kept below 5%.

The specification limits for Liguria class with mean-centered
ata and first and second derivatives are then:

Data mean-centered
a) For specifications that protect the producer:

Object i is within specification if T2
i < 13.8 and SPEi < 3.30 × 10

b) For specifications that protect the consumer:

Object i is within specification if T2
i < 68.2 and SPEi < 6.52 × 10

c) For specifications with balanced error:

Object i is within specification if T2
i < 62.0 and SPEi < 9.57 × 10

Data with first derivative
a) For specifications that protect the producer:

Object i is within specification if T2
i < 13.8 and SPEi < 3.71 × 10

b) For specifications that protect the consumer:

Object i is within specification if T2
i < 37.4 and SPEi < 4.51 × 10

c) For specifications with balanced error:

Object i is within specification if T2
i < 33.5 and SPEi < 6.36 × 10

Data with second derivative
a) For specifications that protect the producer:

Object i is within specification if T2
i < 16.8 and SPEi < 8.12 × 10

b) For specifications that protect the consumer:

Object i is within specification if T2
i < 29.8 and SPEi < 4.97 × 10

c) For specifications with balanced error:

Object i is within specification if T2
i < 19.9 and SPEi < 7.47 × 10
Also note that the training objects Liguria164 and Puglia 064
ere found out of specification and within specification, respec-

ively, in the cross-validation step with data mean-centered.
owever, in the calibration step, which defines the specifica-

ions, both objects are within specifications. The object Liguria164
3 (2010) 475–481 479

d − 0.054 < ŷi < 1.02, for a DPLS model with 3 factors.(8)

d 0.51 < ŷi < 1.31, for a PLS model with 16 factors.(9)

d 0.38 < ŷi < 1.32, for a PLS model with 15 factors.(10)

d 0.018 < ŷi < 1.20, for a DPLS model with 3 factors.(11)

d 0.61 < ŷi < 1.32, for a PLS model with 10 factors.(12)

d 0.47 < ŷi < 1.27, for a PLS model with 9 factors.(13)

d 0.32 < ŷi < 1.14, for a DPLS model with 4 factors.(14)

d 0.78 < ŷi < 1.22, for a PLS model with 8 factors.(15)

d 0.36 < ŷi < 1.24, for a PLS model with 5 factors.(16)

is near the limit of 99% in the three specifications types. The
object has a T2 = 51.9, SPE = 6.71 × 10−7 and ŷ = 0.380. For the
error balanced specification, ŷ is out of the limits (limit of 0.412),
while the T2 and SPE values are within the limits (T2

limit = 63.4
and SPElimit = 8.73 × 10−7). Since we require the object to simul-
taneously satisfy the three limits, the object is declared out of
specifications. In contrast, the object Puglia064 is far from the three
specification types. For example, for error balanced specifications
the object has a T2 of 18.6 (limit of 62.0), a SPE of 2.61 × 10−7 (limit
of 9.14 × 10−7) and a ŷ of 0.631 against lower and upper limits of
0.370 and 1.28. Since the object is within the three boundaries it is
considered to meet specifications.

The defined specifications were checked against a test set.
Table 1 shows the percentages of classification for test objects when
the limits are set with a theoretical confidence level of 99% with
data mean-centered and transformed with the first and second
derivative. For the specification that protects the producer and the
specification that protects the consumer the results are good, with
errors lower than for the training set. For example, for specifica-
tions that protect the producer, the type I error was 0%, against
4.5% (mean-centered) and 6.8% (first and second derivative) for
the training set. For specifications that protect the consumer, the
type II error was 0%, against 2.8% (mean-centered) and 1.4% (first
and second derivative) for the training set. On the contrary, with
the specifications for balanced error with mean-centered data, the
test data produces larger errors than the training data (type I error
of 11.4% and type II of 9.7%). In comparison, for first and second
derivative data the type I error is smaller and the type II error is
slightly larger. Thus we consider that the specifications defined for
the class Liguria are appropriate, although the balanced-error spec-
ification has a higher type I and II error because the objects have to
simultaneously comply with the three boundaries.
Three test objects (mean-centered data) require a particular
analysis: the object Liguria013 that is out of specification, and the
objects Sicilia091 and Lazio 074, that are within specifications.
For the error-balanced specifications, Liguria013 is within the lim-
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Fig. 6. Variation of the type I error of the hotelling T2, SPE and ŷ statistics and the three statistics combined, assuming a confidence level of 95% (a) and 99% (b).
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Fig. 7. Variation of the type II error of the Hotelling T2, SPE and ŷ statistics and the three statistics combined, assuming a confidence level of 95% (a) and 99% (b).

Table 1
Error performance from Liguria olive oil test data set, specification limits with confidence level of 99%.

Data preprocessing Type of specification Optimal factors Type I error Type II error

Mean-centered
Protect producer 3 0% 87.1%
Protect consumer 16 26.3% 0%
Balanced error 15 15.8% 16.1%

1st derivative
Protect producer 3 0% 83.9%
Protect consumer 10 15.8% 0%
Balanced error 9 0% 6.5%
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2nd derivative
Protect producer
Protect consumer
Balanced error

ts of T2 (Fig. 5) and SPE (Fig. 6) but outside of (although close
o) the limits of ŷ (Fig. 6). This also occurs for the specification
hat protects the consumer, so the object is finally declared out of
pecification in the two cases. Objects Sicilia091 and Lazio074 are
ithin the three limits both of the specification that protects the
roducer and the balanced-error specification, so they are within
pecifications.

. Conclusions

Multivariate specifications based on T2, SPE and predicted ŷ have
een established for the NIR spectra of olive oils from the Liguria
egion. Adding limits on ŷ, together with the commonly used T2

nd SPE statistics, improves the definition of the specification and
educes the number of factors needed in the DPLS model. This opti-
al number of factors depends on the type of specification (either
pecification that protect the producer, specification that protect
he consumer or specification that provides a balance of type I and
ype II errors). Note that, in order to reach a general confidence level
lose to 95%, type I and II error of 5%, the individual confidence levels
or T2 and SPE and ŷ had to be set to 99%.
0% 19.4%
36.8% 0%

0% 12.9%
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